Pedagogical intervention mediated by exelearning to strengthen the mathematical competence of interpretation and representation
DOI:
https://doi.org/10.15765/pnrm.v17i32.3688Keywords:
Mathematical skills, interpretation, representation, exlearningAbstract
The sixth students of the José Consuegra Higgins District Educational Institution (Barranquilla Colombia) present low academic performance in the mathematical skills of Interpretation and representation. In this context, a didactic strategy is supported by the creation of digital educational resources in Exelearning. From a quantitative approach, descriptive scope, and type of quasi-experimental design with four groups of students; The methodology was approached from the diagnostic, design, implementation, and evaluation phases. The results of the pretest and posttest data of the parametric Student's t-test for related groups, applied to the control group, yielded a sig. Bilateral = 0.775 > 0.05 indicating that there is no statistically significant difference between the pretest and posttest of the control group; On the other hand, the Wilcoxon non-parametric test for related groups applied to the experimental group yielded a two-sided sig.=0.00 < 0.05, in this sense there is a statistically significant difference between the pretest and posttest of the experimental group. Consequently, it is concluded that the pedagogical intervention achieved an improvement in the development of the mathematical skills of Interpretation and representation.
Downloads
References
Aparicio Gómez, O. Y., & Ostos Ortiz, O. L. (2018). El constructivismo y el construccionismo. Revista Interamericana De Investigación Educación Y Pedagogía RIIEP, 11(2), 115–120. https://doi.org/10.15332/s1657-107X.2018.0002.05
Banco Mundial (2018), Informe sobre el desarrollo mundial 2018: Aprender para hacer realidad la promesa de la educación, cuadernillo del “Panorama general”, Banco Mundial, Washington, DC. Licencia: Creative Commons de Reconocimiento CC BY 3.0 IGO. (8) http://iin.oea.org/pdf-iin/RH/docs-interes/2019/Informe-sobre-el_Desarrollo-Mundial-2018.pdf
Benítez-Chará , W. ., & Saldarriaga-Salazar, M. E. . (2022). Desafíos de los docentes del área de matemáticas en tiempo de covid-19. Panorama, 16(2 (31), 64–89. https://doi.org/10.15765/pnrm.v16i31.3310
Castañeda-Ramírez , S. ., Castro-López , M. V. ., Bohórquez-Espinel , B. C. ., & Ruiz-Vélez, L. M. . (2022). Análisis del impacto de un aplicativo lúdico digital en la motivación y aprendizaje de estudiantes de educación superior en cursos de matemáticas. Panorama, 16(2 (31), 126–146. https://doi.org/10.15765/pnrm.v16i31.3347
Coll, C. (1994). Psicología y Curriculum. Buenos Aires: Paidós.
De Zubiría, J. (2006). Los modelos pedagógicos: Hacia una pedagogía dialogante (2a.Ed.). Cooperativa Editorial Magisterio.
Harel, I. E., & Papert, S. E. (1991). Constructionism. Ablex Publishing.
Hernández-Sampieri, R. ; Mendoza Torres, C.P.(2018). Metodología de la investigación las rutas cuantitativa, cualitativa y mixta. Edamsa Impresiones, S.A. de C.V.
Jiménez, Isabel. El triángulo lógico: una ecuación didáctica emergente para aprender metodología de la investigación. Chía, Cundinamarca: Universidad de La Sabana. 2020.
Ministerio de Educación Nacional de Colombia (1998), Serie Lineamientos Curriculares Matemáticas,
https://www.mineducacion.gov.co/1759/articles-89869_archivo_pdf9.pdf
ICFES (2015). Marco de referencia para la evaluación ICFES, módulo de razonamiento cuantitativo Saber 11°, Saber Pro https://www.icfes.gov.co/documents/20143/1896230/Marco+de++referencia+razonamiento+cuantitativo.pdf
ICFES (2018). Informe Resultados Nacionales Saber 3°, 5° y 9° 2012 – 2017, (36) https://www.icfes.gov.co/documents/20143/1323329/Informe%20nacional%20saber%20569%202012%202017.pdf
Not, L. (1983). Las pedagogías del conocimiento (1a.Ed.). México: Fondo de Cultura Económica.
http://dgsa.uaeh.edu.mx:8080/bibliotecadigital/handle/231104/2583
Piaget, J. (1969). La teoría constructivista de Jean Piaget y su significación para la pedagogía contemporánea. Dominio de las Ciencias, 2, 131.
Siemens, G. (2004). Conectivismo: Una teoría de aprendizaje para la era digital.
Rico L., (1997), Reflexión sobre los fines de la educación matemática. Suma, 24, 5-19 https://redined.educacion.gob.es/xmlui/bitstream/handle/11162/12947/005-019.pdf?sequence=1
Published
Issue
Section
License
Copyright (c) 2023 Panorama

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Panorama by Institución Universitaria Politécnico Grancolombiano is licensed under a Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Unported License.