REPRESENTACIÓN SEMIÓTICA DE LA NOCIÓN DE FUNCIÓN: CONCEPCIONES DE LOS ESTUDIANTES QUE TRANSITAN DEL COLEGIO A LA UNIVERSIDAD - Semiotic Representation of the notion of function: Conceptions of Students who pass from High School to College
PDF (ESP) (Spanish)
PDF (ENG)
XML (Spanish)

Keywords

función
representaciones semióticas
articulación de registros
concepción.

How to Cite

REPRESENTACIÓN SEMIÓTICA DE LA NOCIÓN DE FUNCIÓN: CONCEPCIONES DE LOS ESTUDIANTES QUE TRANSITAN DEL COLEGIO A LA UNIVERSIDAD - Semiotic Representation of the notion of function: Conceptions of Students who pass from High School to College. (2017). Panorama, 11(20), 33-44. https://doi.org/10.15765/pnrm.v11i20.1008

Abstract

Este artículo constituye el reporte de una investigación mayor, cuyo objetivo es evaluar los cambios o modificaciones en la habilidad de los estudiantes para articular diversos registros de representación semiótica con relación a la noción de función en estudiantes matriculados en la asignatura Cálculo Diferencial de dos programas de ingeniería de una universidad pública. La investigación toma como marco de referencia la articulación de los trabajos de diversos investigadores, especialmente los de Duval y Hitt. La metodología utilizada es de tipo cuantitativo y es de naturaleza descriptiva. Los datos fueron recolectados mediante un test de ocho ítems, en los que se utilizan diversos registros de representación en torno al concepto de función. Este test se aplicó al inicio del experimento; luego, se practicó una intervención pedagógica en relación con el concepto de función fundamentada en la articulación de los diversos registros de representación semiótica, luego de lo cual se practicó una nueva aplicación del test. En los resultados se muestran las concepciones observadas entre los estudiantes en dos momentos diferentes del semestre por comparación de los datos obtenidos tanto en el pretest como en el postest. La noción de función que poseen los estudiantes no se corresponde con una definición formal; en su lugar, manifiestan una serie de variaciones conceptuales que, en algunos casos, se encuentran más próximas a una noción intuitiva.

PDF (ESP) (Spanish)
PDF (ENG)
XML (Spanish)

References

Artigue, M. (1990). Epistémologie et didactique. Recherches en didactique des mathematiques, 10(2,3), 241-286.

Artigue, M. (1995). La enseñanza de los principios del cálculo: problemas epistemológicos, cognitivos y didácticos. En Artigue, M.; Douady, R.; Moreno, L. y Gómez, P. (Eds), Ingeniería didáctica en educación matemática. Un esquema para la investigación y la innovación en la enseñanza y el aprendizaje de las matemáticas. Bogotá: Grupo Editorial Iberoamérica.

Azcárate, C. (1995). Sistemas de Representación. UNO. Revista de didáctica de las matemáticas, 4, 53-61.

Cantoral, R. y Farfán, R. (1998). Pensamiento y lenguaje variacional en la introducción al análisis. Epsilon, 42(14), 353 - 369.

Cuestas, A. (2005). Dificultades de los estudiantes de economía en el aprendizaje del concepto de extremo de una función (Tesis de maestría inédita). Bellaterra: Universidad Autónoma de Barcelona.

Cuestas, A. (2007). El proceso de aprendizaje de los conceptos de función y extremo de una función en estudiantes de economía. Análisis de una innovación didáctica (Tesis doctoral inédita). Bellaterra: Universidad Autónoma de Barcelona.

D’Amore, B. (2011). Conceptualización, registros de representaciones semióticas y noética: interacciones constructivistas en el aprendizaje de los conceptos matemáticos e hipótesis sobre algunos factores que inhiben la devolución. Revista científica, (11), 150-154.

Douady, R. (1986). Jeux de cadres et dialectique outil-objet. Recherches en didactique des mathématiques, 7(2), 5-31.

Douady, R. (1995). La ingeniería didáctica y la evolución de su relación con el conocimiento. En Artigue, M.; Douady, R.; Moreno, L. y Gómez, P. (Eds), Ingeniería didáctica en educación matemática. Un esquema para la investigación y la innovación en la enseñanza y el aprendizaje de las matemáticas. Bogotá: Grupo Editorial Iberoamérica.

Douady, R. (1996). Ingeniería didáctica y evolución de la relación con el saber en las matemáticas de collège-seconde. Enseñanza de las matemáticas: relación entre saberes, programas y prácticas. París: Topiques éditions. Publicación del IREM.

Dreyfus, T. (2002) Advanced mathematical thinking processes. En Tall, D. (Ed). Advanced Mathematical Thinking. New York, Boston, Dordrecht, London, Moscow: Kluwer Academic Publisher, 25-41.

Dubinsky, E. (2002). Reflective abstraction in advanced mathematical thinking. En Tall, D. (Ed). Advanced Mathematical Thinking. New York, Boston, Dordrecht, London, Moscow: Kluwer Academic Publisher, 95-126.

Duval, R. (1988). Graphiques et equations: L' Articulation de deux registres. Annales didactique et de sciencies cognitives, 1, 235-253.

Duval, R. (1993). Registres de représentation sémiotique et fonctionnement cognitif de la pensée. Annales de didactique et de sciences cognitives, 5, 37–65.

Duval, R. (2004). Semiosis y pensamiento humano. Registros semióticos y aprendizajes intelectuales. (Vega, M. Trad.). (Obra original publicada en 1995, Sémiosis et pensée humaine. Registres sémiotiques et apprentissages intellectuels). (2da ed.). Cali: Universidad del Valle, Grupo de Educación Matemática.

Duval, R. (2006). Un tema crucial en la educación matemática: la habilidad para cambiar el registro de representación. La Gaceta de la Real Sociedad Matemática Española, 9(1), 143-168.

Eisenberg, T. (2002). Functions and associated learning difficulties. En Tall, D. (Ed). Advanced Mathematical Thinking. New York, Boston, Dordrecht, London, Moscow: Kluwer Academic Publisher, 95-126.

Even, R., y Bruckheimer, M. (1998). Univalence: A Critical or Non-Critical Characteristic of Functions? For the Learning of Mathematics, 18(3), 30-32.

Farfán, R. M. (1997). La investigación en matemática educativa en la reunión centroamericana y del Caribe referida al nivel superior. Revista latinoamericana de investigación en matemática educativa (RELIME), 1(0), 6-26.

Ferrari, M. (2001). Una visión socioepistemológica. Estudio de la función logaritmo (Tesis de maestría inédita). México: Cinvestav-IPN.

Hitt, F. (1994). Teachers' Difficulties with the Construction of Continuous and Discontinuous Functions. Focus on Lemming Problems in Mathematics. 16(4), 33-40.

Hitt, F. (1998) Difficulties in the Articulation of Different Representations Linked to the Concept of Function. Journal of Mathematical Behavior, 17(1), 123-134.

Hitt, F. (2000). Construcción de conceptos matemáticos y de estructuras cognitivas. En Memorias de la XI Semana Regional de Investigación y Docencia en Matemáticas Universidad de Sonora. Sonora: Universidad de Sonora.

Hitt, F. (2003a). El concepto de infinito: obstáculo en el aprendizaje de límite y continuidad de funciones. En Filloy E., Hitt F., Imaz C., Rivera F. y Ursini S. (Eds). Matemática educativa: Aspectos de la investigación actual. México: Fondo de Cultura Económica.

Hitt, F. (2003b). Dificultades en el aprendizaje del cálculo. Recuperado de: www.academia.edu/807014/Dificultades_en_el_aprendizaje_del_cálculo

Hitt, F. (2003c). El carácter funcional de las representaciones. Annales de didactique et de sciencies cognitives, 8, 255-271.

Janvier, C. (1987). Translation processes in mathematics education. En Janvier, C. (Ed.) Problems of representation in mathematics learning and problem solving. Hillsdale, NJ: Erlbaum, 27-32.

García, J. D. (2013). El concepto de función como una integración de los registros de representación (Tesis de maestría inédita). Medellín: Universidad Nacional de Colombia.

Garzón, D. A. (2015). Modelado de Funciones desde el enfoque cognitivo de las representaciones semióticas (Tesis de maestría inédita). Medellín: Universidad de Antioquia.

Leinhardt, G., Zaslavsky, O. y Stein, M. K. (1990). Funciones, gráficas y graficación: tareas, aprendizaje y enseñanza. En Sánchez, E. (ed.) y Hernández, R. (traductor), Functions, Graphs, and Graphing: Tasks, learning, and teaching. Review of Educational Research. USA: American Educational Research Association (AERA), 60(1), 1-64.

Lesh, R., Post, T. y Behr M. (1987) Representations and translations among representations in mathematics learning and problem solving. En Janvier, C. (Ed.) Problems of representation in mathematics learning and problem solving. Hillsdale, NJ: Erlbaum, 33-40.

Markovits Z., Bat-Sheva E. y Bruckheimer M. (1986). Functions today and yesterday. For the learning of mathematics, 6(2), 18-28.

Ministerio de Educación Nacional. (1998). Matemáticas. Lineamientos curriculares. Bogotá: Ministerio de Educación Nacional.

Ministerio de Educación Nacional. (2006). Estándares Básicos de Competencias en Lenguaje, Matemáticas, Ciencias y Ciudadanas. Estándares Básicos de Competencias en Matemáticas. Bogotá: Ministerio de Educación Nacional.

Ospina, D. (2012). Las representaciones semióticas en el aprendizaje del concepto función lineal (Tesis de maestría inédita). Manizales: Universidad Autónoma de Manizales.

Popham, W. J. (2001). ¿Por qué las pruebas estandarizadas no miden la calidad educativa? PREAL. Grupo de análisis para el desarrollo. Recuperado de: http://www.oei.es/evaluacioneducativa/pruebas_estandarizadas_no_miden_calidad_educativa_popham.pdf

Planchart, O. (2002). La visualización y la modelación en la adquisición del concepto de función (tesis doctoral inédita). Universidad Autónoma del Estado de Morelos, Cuernavaca.

Prada, R.; Hernández, C. y Ramírez, P. (2016). Comprensión de la noción de función y la articulación de los registros semióticos que la representan entre estudiantes que ingresan a un programa de ingeniería. Revista Científica, 25, 188-205. Doi: 10.14483/udistrital.jour.RC.2016.25.a3

Rojas, P. J. (2012). Articulación y cambios de sentido en situaciones de tratamiento de representaciones simbólicas de objetos matemáticos (Tesis doctoral inédita). Bogotá: Universidad Distrital Francisco José de Caldas.

Rojas, P. J. (2014). Articulación de saberes matemáticos: representaciones semióticas y sentidos. Bogotá: Comité Editorial Interinstitucional (CAIDE) - Universidad Distrital Francisco José de Caldas.

Sánchez, P., Martínez, M. y Coronado, A. (2015). Una caracterización de la Competencia Matemática Representar: el caso de la función lineal. Amazonia investiga, 4(7), 19-28.

Santos, M., y Vargas, C. (2003). Más allá del uso de exámenes estandarizados. Avance y perspectiva, 22, 9-22.

Sierpinska, A. (1992). On understanding the notion of function. En Dubinsky, E. y Harel, G. (Eds.). The Concept of Function: Aspects of Epistemology and Pedagogy. Washington, D.C.: Mathematical Association of America, 25, 25‐58.

Tall, D. (1992). The Transition to Advanced Mathematical Thinking: Functions, Limits, Infinity, and Proof. En Grouws, D. A. (Ed.), Handbook of research on mathematics teaching and learning: A project of the National Council of Teachers of Mathematics. New York: Macmillan, 495‐511.

Tall, D. (2002). The Psychology of Advanced Mathematical Thinking. En Tall, D. (Ed). Advanced Mathematical Thinking. New York, Boston, Dordrecht, London, Moscow: Kluwer Academic Publisher, 3-21.

Vinner, S. (1992). The function Concept as a Prototype for problems in Mathematics Learning. En Dubinsky, E. y Harel, G. (Eds.). The Concept of Function: Aspects of Epistemology and Pedagogy. Washington, D.C.: Mathematical Association of America, 25, 195‐213.

Vinner, S. (2002). The role of definitions in the teaching and learning of mathematics. En Tall, D. (Ed). Advanced Mathematical Thinking. New York, Boston, Dordrecht, London, Moscow: Kluwer Academic Publisher, 65-81.

Zúñiga López, M. I (2009). Un estudio acerca de la construcción del concepto de función. Visualización en alumnos de un curso de cálculo (Tesis de maestría inédita). Tegucigalpa: Universidad Pedagógica Nacional Francisco Morazán.

Authors who publish with this journal agree to the following terms:

    1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
    2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
    3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

Licencia de Creative Commons


Panorama by Institución Universitaria Politécnico Grancolombiano is licensed under a Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Unported License.