Resumen
Así como cualquier otro productobio-energético, la producción de etanol requiere insumos fósiles; enconsecuencia los supuestos beneficios de seguridad energética y mitigación decarbono dependen de en qué medida estos insumos son capaces de generar unimportante rendimiento bio-energético. El etanol brasilero, hecho de cañaazucarera, ha sido reportado como el sustituto más eficiente de la gasolinadentro de las tecnologías que están comercialmente disponibles. Es por esto queha sido objeto de varios análisis de energética,es decir, balances energéticos. Resulta curioso que dichos estudios varíanampliamente dependiendo de la aproximación usada por los estudiosos del tema yadicionalmente no son comparables entre sí, debido a divergencias en el métodode medición. El objetivo de este artículo es la estandarización de losresultados obtenidos por cuatro de los más prominentes autores en este campo,generando de esta manera la posibilidad de contrastar sus estudios y dar algunasluces sobre los estudios de energética aplicados a la bioenergía.Referencias
Coelho, S. Brazilian sugarcane ethanol: lesson learned. in Workshop & Business Forum on Sustainable Biomass Production for the World Market. 2005. São Paulo: CENBIO – The Brazilian Reference Center on Biomass.
Ramírez Triana, C.A., Biocombustibles: seguridad energética y sostenibilidad. Conceptuialización académica e implementación en Colombia. Punto de Vista, 2010. 2: p. 43-79.
Schwartz, S.B., "A commonwealth within itself". The early Brazilian sugar industry, 1550-1670. Revista de Indias, 2005. LXV(233): p. 49-116.
Boddey, R., et al., Bio-Ethanol Production in Brazil in Biofuels, Solar and Wind as Renewable Energy Systems Benefits and Risks D. Pimentel, Editor. 2008, Springer Netherlands. p. 321-356.
Xavier, M.R., The Brazilian Sugarcane Ethanol Experience, in Advancing Liberty From the Economy to Ecology. 2007, Competitive Enterprise Institute: Washington.
Martines-Filho, J., H.L. Burnquist, and C.E.F. Vian, Bioenergy and the Rise of Sugarcane-Based Ethanol in Brazil, in Choices: The magazine of food, farm and resource issues. 2006, America Agricultoral Economics association.
Macedo, I.d.C., Greenhouse gas emissions and energy balances in bio-ethanol production and utilization in Brazil (1996). Biomass and Bioenergy, 1998. 14(1): p. 77-81.
EPE (Empresa de pesquisa energética), Perspectives for Ethanol in Brazil [Perspectivas para o etanol no Brasil (Portuguese)], in Cadernos de Energia EPE. 2008: Brasília. p. 36.
COPERSUCAR. Ethanol elaboration process 2010 [cited 31/07/2010]; Available from: http://www.copersucar.com.br/institucional/ing/academia/alcool.asp.
Dale, B.E., Thinking clearly about biofuels: ending the irrelevant ‘net energy’ debate and developing better performance metrics for alternative fuels. Biofuels, Bioproducts and Biorefining, 2007. 1(1): p. 14-17.
Mathews, J.A., Biofuels: What a Biopact between North and South could achieve. Energy Policy, 2007. 35(7): p. 3550-3570.
Goldemberg, J., Ethanol for a Sustainable Energy Future. Science, 2007. 315(5813): p. 808-810.
Pimentel, D., Ethanol Fuels: Energy Balance, Economics, and Environmental Impacts Are Negative. Natural Resources Research, 2003. 12(2): p. 127-134.
Searchinger, T., et al., Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change. Science, 2008. 319(5867): p. 1238-1240.
Brown, L. (2008) Why Ethanol Production Will Drive World Food Prices Even Higher in 2008. Volume, 1-5
Von Blottnitz, H. and M.A. Curran, A review of assessments conducted on bio-ethanol as a transportation fuel from a net energy, greenhouse gas, and environmental life cycle perspective. Journal of Cleaner Production, 2007. 15(7): p. 607-619.
Cleveland, C.J. and R. Costanza (2008) Energy return on investment (EROI).
Smeets, E., et al., Sustainability of Brazilian bio-ethanol. 2006, Copernicus Institute– Department of Science, Technology and Society: Utrecht, The Netherlands.
Pimentel, D. and T.W. Patzek, Ethanol Production: Energy and Economic Issues Related to U.S. and Brazilian Sugarcane, in Biofuels, Solar and Wind as Renewable Energy Systems. 2008. p. 357-371.
Macedo, I.C., J.E.A. Seabra, and J.E.A.R. Silva, Green house gases emissions in the production and use of ethanol from sugarcane in Brazil: The 2005/2006 averages and a prediction for 2020. Biomass and Bioenergy, 2008. 32(7): p. 582-595.
Odum, H., M. Brown, and S. Brant-Williams, Handbook of Emergy Evaluation. A Compendium of Data for Emergy Computation. Draft ed. Vol. 1. 2000, Miami, FL: Center for Environmental Policy.
Dias De Oliveira, M.E., B.E. Vaughan, and E.J. Rykiel, Ethanol as Fuel: Energy, Carbon Dioxide Balances, and Ecological Footprint. BioScience, 2005. 55(7): p. 593-602.
MAPA, Balanço Nacional da Cana-de-Açúcar e Agroenergia P.e.A. Ministério da Agricultura, Editor. 2007: Brasilia. DF.
Pimentel, D., ed. CRC Handbook of energy utilization in agriculture. 1980, CRC Press: Boca Raton.
Durante, D. and M. Miltenberger, Net Energy Balance of Ethanol Production. Ethanol Across America, 2004.
Shapouri, H., J.A. Duffield, and M. Wang, The Energy Balance of Corn Ethanol: An Update, E.R.S. United States Department of Agriculture, Agricultural Economics Reports, Editor. 2002.
Woods, J. and A. Bauen, Technology status review and carbon abatement potential of renewable transport fuels in the UK. 2003, Imperial College London: London.
Punto de vista by Institución Universitaria Politécnico Grancolombiano is licensed under a Creative Commons Reconocimiento-NoComercial-SinObraDerivada 3.0 Unported License.
Creado a partir de la obra en http://www.poligran.edu.co/puntodevista.