Resumen
En este artículo se presenta lapropuesta de un método para la valoración del nivel de madurez en la calidad delos datos (IQM-QDMM) que permite a las organizaciones identificar y fortalecersus prácticas empresariales y la tecnología utilizada para el tratamiento delos datos, a fin de asegurar la calidad en los sistemas de información como unfactor para la competitividad. Este método se basa en el modelo demadurez IQM (por sus siglas en inglés Information Quality Metrics) propuestopor ESI Center SinerTIC Andino. IQM define las perspectivas organizacionales ylos niveles de madurez para la valoración y tratamiento de los datos en laorganización, a partir de lo cual, se determina un sistema de métricas, las condicionesde las áreas de valor del modelo de madurez y los instrumentos para llevar acabo dicha valoración.Referencias
Allen, M.D., Carter, S., Aiken, P., Cyrus, M.K., Wade, K., McCormac, S. (2003). Extracting Data from Free Text Fields: Assuring Data Quality for ERP Implementation. Proceedings of the Eighth International Conference on Information Quality, pp.319-330.
Amicis, F. D., Barone, D., Batini, C. (2006). An Analytical Framework to Analyze Dependencies among Data Quality Dimensions. En: Talburt, J., Pierce, E., Wu, N. and Campbell, T. (Eds), Proceedings of the 11th International Conference on Information Quality, pp.369-383.
Batini, C., Barone, D., Mastrella, M., Maurino, A., Ruffini, C. (2007). A Framework and a Methodology for Data Quality Assessment and Monitoring. Proceedings of 12th International Conference on Information Quality. Cambridge, MA, Estados Unidos.
Eckerson, W. (2002). Data Warehousing Special Report: Data quality and the bottom line. ADT MAG : http://adtmag.com/articles/2002/05/01/data-warehousing-special-report-data-quality-and-the-bottom-line.aspx
ESI Center – SINERTIC. (2011). Metodología del Servicio IQM.
Even. A, Shankaranarayanan, G., Berger, P. D. (2005). Profit Maximization with Data Management Systems. Proceedings of the International Conference on Information Systems. Las Vegas.
Führing, P., Naumann, F. (2007). Emergent Data Quality Annotation and Visualization. Proceedings of the Twelth International Conference on Information Quality (ICIQ), pp.424-430.
Heinrich, B., Kaiser, M., Klier, M. (2007). DQ metrics: a novel approach to quantify currency and its application in CRM. Proceedings of the 12th International Conference on Information Quality (ICIQ 07), pp.431-445.
Hipp, J., Müller, M., Hohendorff, J., Naumann, F. (2007). Rule-Based Measurement of Data Quality In Nominal Data. Proceedings of the 12th International Conference on Information Quality (ICIQ 07), pp.364-378.
Kerr, K., Norris, T. (2004). The development of a healthcare data quality framework and strategy. Ninth International Conference on Information Quality (IQ 2004), pp.218-233.
Leonowich-Graham, P., Willshire, M.J. (2003). A Data Quality Framework for Small Businesses. Proceedings of the 8th International Conference on Information Quality, pp. 239-244.
Long, J. A., Seko, C. E. (2002). A New Method for Database Data Quality Evaluation at the Canadian Institute for Health Information (CIHI). Proceedings of the International Conference on Information Quality (IQ), pp. 238-250.
Nyaboga, A. B., Nwuara, M. F. (2009). Strategies for Gaining Competitive Advantage in A Dynamic Environment Thru Data Quality. International of Management & Information System. 13(1): 13-22.
Oliveira, P., Rodrigues, M.F., Henriques, P.R. (2006). An Ontology-Based Approach for Data Cleaning. Proceedings of the 11th International Conference of Information Quality (ICIQ 2006), pp.307-320.
Savchenko, S. (2003). Automating Objective Data Quality Assessment. Proceedings of the 8th International Conference on Information Quality, pp. 353-364.
Shankar, G., Watts, S. (2003). A Relevant, Believable Approach for Data Quality Assessment. Proceedings of the 8th International Conference on Information Quality, pp.178-189.
SINERTIC. (2009). Metodología de la Línea de Base del Servicio QINFO.
Wang, H., Wang, S. (2007). Mining purchasing sequence data for online customer segmentation. International Journal of services operations and informatics, 2(4), 382 - 390.
Punto de vista by Institución Universitaria Politécnico Grancolombiano is licensed under a Creative Commons Reconocimiento-NoComercial-SinObraDerivada 3.0 Unported License.
Creado a partir de la obra en http://www.poligran.edu.co/puntodevista.