CONTAMINANTES EMERGENTES FARMACEUTICOS: Impactos, métodos alternativos de determinación y tecnologías limpias para su remoción
Libro PDF

Cómo citar

CONTAMINANTES EMERGENTES FARMACEUTICOS: Impactos, métodos alternativos de determinación y tecnologías limpias para su remoción. (2021). Catálogo Editorial Politecnico Grancolombiano, 23(7), 1-308. https://doi.org/10.15765/poli.v1i1.3592

Resumen

Este libro nace del enfoque compartido por todos sus autores acerca de los problemas ambientales y del papel que sobre ellos tienen las diferentes disciplinas del saber, especialmente la ingeniería ambiental. Este enfoque contempla la ingeniera como una disciplina que integra las teorías y conocimientos de la ciencia, así como las herramientas tecnológicas, para proveer a la sociedad soluciones, servicios, y productos; todos ellos mediados por la innovación. Según esto, los científicos e ingenieros están llamados a establecer labores experimentales que permitan caracterizar y realizar el tratamiento de diferentes contaminantes presentes en los ecosistemas ambientales. El caso de los contaminantes emergentes representa un terreno fértil para el desarrollo de nuevas tecnologías y la aplicación de algunas de existentes. Será sin duda uno de los temas de mayor estudio en los siguientes años, así como lo ha sido recientemente. Dentro de este gran campo de los contaminantes emergentes, los medicamentos utilizados en humanos son un gran campo de estudio, es a este campo al que hemos dedicado este libro, sabiendo que muchos otros contaminantes emergentes han quedado por fuera de el, y que revisten una importancia similar; por ejemplo, los medicamentos de uso veterinario, pesticidas y productos de cuidado e higiene personal tales como los cosméticos.

Libro PDF

Referencias

Adamek, E., Baran, W., & Sobczak, A. (2016). Photocatalytic degradation of veterinary

antibiotics: Biodegradability and antimicrobial activity of intermediates.

Process Safety and Environmental Protection, 103, 1–9. doi:10.1016/j.

psep.2016.06.015

Ahmed H.H. Bakheit, Badraddin M.H. Al-Hadiya, & Ahmed A. Abd-Elgalil. (2014). Profiles

of drug substances, excipients and related methodology, academic press:

Chapter one - azithromycin (10th ed.) Oxford University. https://doi.org/10.1016/

B978-0-12-800173-8.00001-5.

Andronic, L., Enesca, A., Cazan, C., & Visa, M. (2014). TiO2–active carbon composites

for wastewater photocatalysis. Journal of Sol-Gel Science and Technology,

(3), 396-405. https://doi.org/10.1007/s10971-014-3393-6.

Anh, H. Q., Le, T. P. Q., Da Le, N., Lu, X. X., Duong, T. T., Garnier, J., … Nguyen, T. A.

H. (2020). Antibiotics in surface water of East and Southeast Asian countries: A

focused review on contamination status, pollution sources, potential risks, and

future perspectives. Science of The Total Environment, 142865. doi:10.1016/j.

scitotenv.2020.142865

Babić, S., Ćurković, L., Ljubas, D., & Čizmić, M. (2017). TiO2 assisted photocatalytic degradation

of macrolide antibiotics. Current Opinion in Green and Sustainable

Chemistry, 6, 34-41. https://doi.org/10.1016/j.cogsc.2017.05.004.

Bielen, A., Šimatović, A., Kosić-Vukšić, J., Senta, I., Ahel, M., Babić, S., Jurina, T.,

González Plaza, J.J., Milaković, M., Udiković-Kolić, N., (2017). Negative environmental

impacts of antibiotic-contaminated effluents from pharmaceutical

industries. Water Res. 126, 79–87. https://doi.org/10.1016/j.watres.2017.09.019.

Binh, V.N., Dang, N., Anh, N.T.K., Ky, L.X., Thai, P.K., (2018). Antibiotics in the aquatic

environment of Vietnam: sources, concentrations, risk and control strategy.

Chemosphere 197, 438–450

Blair, B. D., Crago, J. P., Hedman, C. J., & Klaper, R. D. (2013). Pharmaceuticals and

personal care products found in the Great Lakes above concentrations of environmental

concern. Chemosphere (Oxford), 93(9), 2116-2123. https://doi.org/

1016/j.chemosphere.2013.07.057.

Botero-Coy, A. M., Martínez-Pachón, D., Boix, C., Rincón, R. J., Castillo, N., Arias-Marín,

L. P., Manrique-Losada, L., Torres-Palma, R., Moncayo-Lasso, A., &

Hernández, F. (2018). An investigation into the occurrence and removal of

pharmaceuticals in Colombian wastewater. The Science of the Total Environment,

, 842-853. https://doi.org/10.1016/j.scitotenv.2018.06.088.

Carp, O., Huisman, C.L., Reller, A., (2004). Photoinduced reactivity of titanium dioxide.

Prog. Solid State Chem. 1e2, 33e177.

Carvalho, I.T., Santos, L., (2016). Antibiotics in the aquatic environments: a review of

the European scenario. Environ. Int. 94, 736–757

Čizmić, M., Ljubas, D., Rožman, M., Ašperger, D., Ćurković, L., & Babić, S. (2019).

Photocatalytic Degradation of Azithromycin by Nanostructured TiO2 Film: Kinetics,

Degradation Products, and Toxicity. Materials, 12(6), 873. https://doi.

org/10.3390/ma12060873.

COMISIÓN EUROPEA. (2015). Propuesta de Directiva del parlamento Europeo y del

consejo 16 de diciembre de 2008, relativa a las normas de calidad ambiental

en el ámbito de la política de aguas por la que se modifican y derogan ulteriormente

las Directivas 82/176/CEE, 83/513/CEE, 84/156/CEE, 84/491/CEE y 86/280/

CEE del Consejo, y por la que se modifica la Directiva 2000/60/CE.Universidades

Públicas de Andalucía. Retrieved from http://www.redalyc.org/articulo.

oa?id=75507314.

Danner, M.C., Robertson, A., Behrends, V., Reiss, J., 2019. Antibiotic pollution in surface

fresh waters: occurrence and effects. Sci. Total Environ. 664, 793–804.

Deblonde, T., Cossu-Leguille, C., & Hartemann, P. (2011). Emerging pollutants in wastewater:

A review of the literature. International Journal of Hygiene and Environmental

Health, 214(6), 442–448. doi:10.1016/j.ijheh.2011.08.002

E. Zuccato, S. Castiglioni, R. Bagnati, M. Melis, R. Fanelli (2010),. Source, occurrence

and fate of antibiotics in the Italian aquatic environment J. Hazard. Mater., 179

pp. 1042-1048, 10.1016/j.jhazmat.2010.03.110

Felis, E., Kalka, J., Sochacki, A., Kowalska, K., Bajkacz, S., Harnisz, M., & Korzeniewska,

E. (2020). Antimicrobial pharmaceuticals in the aquatic environment - occurrence

and environmental implications. European Journal of Pharmacology,

, 172813. https://doi.org/10.1016/j.ejphar.2019.172813.

Feng, Y., Rijnaarts, H. H. M., Yntema, D., Gong, Z., Dionysiou, D. D., Cao, Z., … Wang,

Y. (2020). Applications of anodized TiO2 nanotube arrays on the removal of

aqueous contaminants of emerging concern: A review. Water Research, 186,

doi:10.1016/j.watres.2020.116327

Fohner, A. E., Sparreboom, A., Altman, R. B., & Klein, T. E. (2017). PharmGKB

summary. Pharmacogenetics and Genomics, 27(4), 164–167. doi:10.1097/

fpc.0000000000000270

Forte, M., Mita, L., Cobellis, L., Merafina, V., Specchio, R., Rossi, S., Mita, D.G., Mosca,

L., Castaldi, M.A., De Falco, M., Laforgia, V., Crispi, S., (2016). Triclosan and

bisphenol a affect decidualization of human endometrial stromal cells. Mol.

Cell. Endocrinol. 422, 74–83.

G. Cernuto, N. Masciocchi, A. Cervellino, G.M. Colonna, A. Guagliardi, (2011). Size and

shape dependence of the photocatalytic activity of TiO2 nanocrystals: a total

scattering Debye function study, J. Am. Chem. Soc. 133 3114–3119.

Harada, A., Komori, K., Nakada, N., Kitamura, K., & Suzuki, Y. (2008). Biological effects

of PPCPs on aquatic lives and evaluation of river waters affected by different

wastewater treatment levels. Water Science and Technology, 58(8), 1541-1546.

https://doi.org/10.2166/wst.2008.742.

Herrero, A., Vila, J., Eljarrat, E., Ginebreda, A., Sabater, S., Batalla, R.J., Barceló, D.,

(2018). Transport of sediment borne contaminants in a Mediterranean river

during a high flow event. Sci. Total Environ. 633, 1392–1402. https://doi.org/

1016/j. scitotenv.2018.03.205

Katzung, B. G. (2018). Basic y Clinical Pharmacology, Fourteenth Edition. In Basic and

Clinical Pharmacology.

Kirst, H.A. (2002). Introduction to the macrolide antibiotics, In: Macrolide Antibiotics,

W. Schonfeld and H.A. Kirst, (Eds.), Birkhauser Verlag, Basel-Boston-Berlin, pp

-13.

Helmestam, M. , Davey, E. , Stavreus-Evers, A. , Olovsson, M. , (2014). Bisphenol A

affects human endometrial endothelial cell angiogenic activity in vitro. Reprod.

Toxicol. 46, 69–76

Kohno, Y. (2003). In Ōmura S. (Ed.), Chapter 6 - pharmacokinetics and metabolism of

macrolides. San Diego: Academic Press.

Kumar, M., Jaiswal, S., Kaur Sodhi, K., Shree, P., Kumar Singh, D., Kumar Agrawal,

P., & Shukla, P. (2019). Antibiotics bioremediation: Perspectives on its ecotoxicity

and resistance. Environment International, 124, 448-461. https://doi.org/

1016/j.envint .2018.12.065

Kümmerer, K. (2009a). Antibiotics in the aquatic environment – A review – Part I.

Chemosphere (Oxford), 75(4), 417-434. https://doi.org/10.1016/j.chemosphere.

11.086.

Kümmerer, K. (2009b). Antibiotics in the aquatic environment – A review – Part II.

Chemosphere (Oxford), 75(4), 435-441. https://doi.org/10.1016/j.chemosphere.

12.006.

L. Tong, S. Huang, Y. Wang, H. Liu, M. Li. (2014),.Occurrence of antibiotics in the aquatic

environment of Jianghan plain, central China Sci. Total Environ., 497–498 ,

pp. 180-187, 10.1016/j.scitotenv.2014.07.068

Lastre-Acosta, A. M., Teixeria, A. C., Jau, & Jáuregui-Haza, U. J. (2012). ADVANCED

OXIDATION PROCESSES FOR THE TREATMENT OF AQUEOUS SYSTEMS CONTAMINATED WITH ANTIBIOTICS. VII Simposio Universitario Iberoamericano

Sobre Medioambiente-16 Convención Científica De Ingenieria Y Arquitectura,

https://www.researchgate.net/publication/296994679

Li, X., He, J., (2013). Synthesis of raspberry-like SiO2eTiO2 nanoparticles toward antireflective

and self-cleaning coatings. ACS Appl. Mater. Interfaces 11, 5282e5290.

Li, X., Yu, J., & Jiang, C. (2020). Principle and surface science of photocatalysis. Surface

Science of Photocatalysis, 1–38. doi:10.1016/b978-0-08-102890-2.00001-4

Li, Y., Ma, Y., Yang, L., Duan, S., Zhou, F., Chen, J., Liu, Y., & Zhang, B. (2020). Effects of

azithromycin on feeding behavior and nutrition accumulation of Daphnia magna

under the different exposure pathways. Ecotoxicology and Environmental

Safety, 197, 110573. https://doi.org/10.1016/j.ecoenv.2020.110573.

Li, Z., Cong, S., Xu, Yi. (2014). Brookite vs anatase TiO2 in the photocatalytic activity for

organic degradation in water, ACS Catal. 4 3273–3280

Li, Z., Li, M., Zhang, Z., Li, P., Zang, Y., Liu, X., (2020b). Antibiotics in aquatic environments

of China: a review and meta-analysis. Ecotoxicol. Environ. Saf. 199,

Liu, X., Zhang, G., Liu, Y., Lu, S., Qin, P., Guo, X., … Zhang, T. (2019). Occurrence and

fate of antibiotics and antibiotic resistance genes in typical urban water of Beijing,

China. Environmental Pollution. doi:10.1016/j.envpol.2018.12.005

Loos, R., Marinov, D., Sanseverino, I., Napierska, D., & Lettieri, T. (2018). Review of the

st Watch List under the Water Framework Directive and recommendations for

the 2nd Watch List. Publications Office. https://doi.org/10.2760/614367.

Lumaret, J.-P., Errouissi, F., Floate, K., Römbke, J., Wardhaugh, K., (2012). A review

on the toxicity and non-target effects of macrocyclic lactones in terrestrial and

aquatic environments. Curr. Pharm. Biotechnol. 13, 1004–1060. http://dx.doi.

org/10.2174/ 138920112800399257

Lyu, J., Yang, L., Zhang, L., Ye, B., Wang, L., (2020). Antibiotics in soil and water in

China – a systematic review and source analysis. Environ. Pollut. 266, 115147

M. Maletić, M. Vukčević, A. Kalijadis, I. Janković-Častvan, A. Dapčević, Z. Laušević,

M. Laušević. (2016), Hydrothermal synthesis of TiO2/carbon composites and

their application for removal of organic pollutants. Arab. J. Chem. 10.1016/j.

arabjc.2016.06.020

Milaković, M., Vestergaard, G., González-Plaza, J. J., Petrić, I., Šimatović, A., Senta, I.,

… Udiković-Kolić, N. (2019). Pollution from azithromycin-manufacturing promotes

macrolide-resistance gene propagation and induces spatial and seasonal

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-SinDerivadas 4.0.