Resumen
Este libro nace del enfoque compartido por todos sus autores acerca de los problemas ambientales y del papel que sobre ellos tienen las diferentes disciplinas del saber, especialmente la ingeniería ambiental. Este enfoque contempla la ingeniera como una disciplina que integra las teorías y conocimientos de la ciencia, así como las herramientas tecnológicas, para proveer a la sociedad soluciones, servicios, y productos; todos ellos mediados por la innovación. Según esto, los científicos e ingenieros están llamados a establecer labores experimentales que permitan caracterizar y realizar el tratamiento de diferentes contaminantes presentes en los ecosistemas ambientales. El caso de los contaminantes emergentes representa un terreno fértil para el desarrollo de nuevas tecnologías y la aplicación de algunas de existentes. Será sin duda uno de los temas de mayor estudio en los siguientes años, así como lo ha sido recientemente. Dentro de este gran campo de los contaminantes emergentes, los medicamentos utilizados en humanos son un gran campo de estudio, es a este campo al que hemos dedicado este libro, sabiendo que muchos otros contaminantes emergentes han quedado por fuera de el, y que revisten una importancia similar; por ejemplo, los medicamentos de uso veterinario, pesticidas y productos de cuidado e higiene personal tales como los cosméticos.
Referencias
Adamek, E., Baran, W., & Sobczak, A. (2016). Photocatalytic degradation of veterinary
antibiotics: Biodegradability and antimicrobial activity of intermediates.
Process Safety and Environmental Protection, 103, 1–9. doi:10.1016/j.
psep.2016.06.015
Ahmed H.H. Bakheit, Badraddin M.H. Al-Hadiya, & Ahmed A. Abd-Elgalil. (2014). Profiles
of drug substances, excipients and related methodology, academic press:
Chapter one - azithromycin (10th ed.) Oxford University. https://doi.org/10.1016/
B978-0-12-800173-8.00001-5.
Andronic, L., Enesca, A., Cazan, C., & Visa, M. (2014). TiO2–active carbon composites
for wastewater photocatalysis. Journal of Sol-Gel Science and Technology,
(3), 396-405. https://doi.org/10.1007/s10971-014-3393-6.
Anh, H. Q., Le, T. P. Q., Da Le, N., Lu, X. X., Duong, T. T., Garnier, J., … Nguyen, T. A.
H. (2020). Antibiotics in surface water of East and Southeast Asian countries: A
focused review on contamination status, pollution sources, potential risks, and
future perspectives. Science of The Total Environment, 142865. doi:10.1016/j.
scitotenv.2020.142865
Babić, S., Ćurković, L., Ljubas, D., & Čizmić, M. (2017). TiO2 assisted photocatalytic degradation
of macrolide antibiotics. Current Opinion in Green and Sustainable
Chemistry, 6, 34-41. https://doi.org/10.1016/j.cogsc.2017.05.004.
Bielen, A., Šimatović, A., Kosić-Vukšić, J., Senta, I., Ahel, M., Babić, S., Jurina, T.,
González Plaza, J.J., Milaković, M., Udiković-Kolić, N., (2017). Negative environmental
impacts of antibiotic-contaminated effluents from pharmaceutical
industries. Water Res. 126, 79–87. https://doi.org/10.1016/j.watres.2017.09.019.
Binh, V.N., Dang, N., Anh, N.T.K., Ky, L.X., Thai, P.K., (2018). Antibiotics in the aquatic
environment of Vietnam: sources, concentrations, risk and control strategy.
Chemosphere 197, 438–450
Blair, B. D., Crago, J. P., Hedman, C. J., & Klaper, R. D. (2013). Pharmaceuticals and
personal care products found in the Great Lakes above concentrations of environmental
concern. Chemosphere (Oxford), 93(9), 2116-2123. https://doi.org/
1016/j.chemosphere.2013.07.057.
Botero-Coy, A. M., Martínez-Pachón, D., Boix, C., Rincón, R. J., Castillo, N., Arias-Marín,
L. P., Manrique-Losada, L., Torres-Palma, R., Moncayo-Lasso, A., &
Hernández, F. (2018). An investigation into the occurrence and removal of
pharmaceuticals in Colombian wastewater. The Science of the Total Environment,
, 842-853. https://doi.org/10.1016/j.scitotenv.2018.06.088.
Carp, O., Huisman, C.L., Reller, A., (2004). Photoinduced reactivity of titanium dioxide.
Prog. Solid State Chem. 1e2, 33e177.
Carvalho, I.T., Santos, L., (2016). Antibiotics in the aquatic environments: a review of
the European scenario. Environ. Int. 94, 736–757
Čizmić, M., Ljubas, D., Rožman, M., Ašperger, D., Ćurković, L., & Babić, S. (2019).
Photocatalytic Degradation of Azithromycin by Nanostructured TiO2 Film: Kinetics,
Degradation Products, and Toxicity. Materials, 12(6), 873. https://doi.
org/10.3390/ma12060873.
COMISIÓN EUROPEA. (2015). Propuesta de Directiva del parlamento Europeo y del
consejo 16 de diciembre de 2008, relativa a las normas de calidad ambiental
en el ámbito de la política de aguas por la que se modifican y derogan ulteriormente
las Directivas 82/176/CEE, 83/513/CEE, 84/156/CEE, 84/491/CEE y 86/280/
CEE del Consejo, y por la que se modifica la Directiva 2000/60/CE.Universidades
Públicas de Andalucía. Retrieved from http://www.redalyc.org/articulo.
oa?id=75507314.
Danner, M.C., Robertson, A., Behrends, V., Reiss, J., 2019. Antibiotic pollution in surface
fresh waters: occurrence and effects. Sci. Total Environ. 664, 793–804.
Deblonde, T., Cossu-Leguille, C., & Hartemann, P. (2011). Emerging pollutants in wastewater:
A review of the literature. International Journal of Hygiene and Environmental
Health, 214(6), 442–448. doi:10.1016/j.ijheh.2011.08.002
E. Zuccato, S. Castiglioni, R. Bagnati, M. Melis, R. Fanelli (2010),. Source, occurrence
and fate of antibiotics in the Italian aquatic environment J. Hazard. Mater., 179
pp. 1042-1048, 10.1016/j.jhazmat.2010.03.110
Felis, E., Kalka, J., Sochacki, A., Kowalska, K., Bajkacz, S., Harnisz, M., & Korzeniewska,
E. (2020). Antimicrobial pharmaceuticals in the aquatic environment - occurrence
and environmental implications. European Journal of Pharmacology,
, 172813. https://doi.org/10.1016/j.ejphar.2019.172813.
Feng, Y., Rijnaarts, H. H. M., Yntema, D., Gong, Z., Dionysiou, D. D., Cao, Z., … Wang,
Y. (2020). Applications of anodized TiO2 nanotube arrays on the removal of
aqueous contaminants of emerging concern: A review. Water Research, 186,
doi:10.1016/j.watres.2020.116327
Fohner, A. E., Sparreboom, A., Altman, R. B., & Klein, T. E. (2017). PharmGKB
summary. Pharmacogenetics and Genomics, 27(4), 164–167. doi:10.1097/
fpc.0000000000000270
Forte, M., Mita, L., Cobellis, L., Merafina, V., Specchio, R., Rossi, S., Mita, D.G., Mosca,
L., Castaldi, M.A., De Falco, M., Laforgia, V., Crispi, S., (2016). Triclosan and
bisphenol a affect decidualization of human endometrial stromal cells. Mol.
Cell. Endocrinol. 422, 74–83.
G. Cernuto, N. Masciocchi, A. Cervellino, G.M. Colonna, A. Guagliardi, (2011). Size and
shape dependence of the photocatalytic activity of TiO2 nanocrystals: a total
scattering Debye function study, J. Am. Chem. Soc. 133 3114–3119.
Harada, A., Komori, K., Nakada, N., Kitamura, K., & Suzuki, Y. (2008). Biological effects
of PPCPs on aquatic lives and evaluation of river waters affected by different
wastewater treatment levels. Water Science and Technology, 58(8), 1541-1546.
https://doi.org/10.2166/wst.2008.742.
Herrero, A., Vila, J., Eljarrat, E., Ginebreda, A., Sabater, S., Batalla, R.J., Barceló, D.,
(2018). Transport of sediment borne contaminants in a Mediterranean river
during a high flow event. Sci. Total Environ. 633, 1392–1402. https://doi.org/
1016/j. scitotenv.2018.03.205
Katzung, B. G. (2018). Basic y Clinical Pharmacology, Fourteenth Edition. In Basic and
Clinical Pharmacology.
Kirst, H.A. (2002). Introduction to the macrolide antibiotics, In: Macrolide Antibiotics,
W. Schonfeld and H.A. Kirst, (Eds.), Birkhauser Verlag, Basel-Boston-Berlin, pp
-13.
Helmestam, M. , Davey, E. , Stavreus-Evers, A. , Olovsson, M. , (2014). Bisphenol A
affects human endometrial endothelial cell angiogenic activity in vitro. Reprod.
Toxicol. 46, 69–76
Kohno, Y. (2003). In Ōmura S. (Ed.), Chapter 6 - pharmacokinetics and metabolism of
macrolides. San Diego: Academic Press.
Kumar, M., Jaiswal, S., Kaur Sodhi, K., Shree, P., Kumar Singh, D., Kumar Agrawal,
P., & Shukla, P. (2019). Antibiotics bioremediation: Perspectives on its ecotoxicity
and resistance. Environment International, 124, 448-461. https://doi.org/
1016/j.envint .2018.12.065
Kümmerer, K. (2009a). Antibiotics in the aquatic environment – A review – Part I.
Chemosphere (Oxford), 75(4), 417-434. https://doi.org/10.1016/j.chemosphere.
11.086.
Kümmerer, K. (2009b). Antibiotics in the aquatic environment – A review – Part II.
Chemosphere (Oxford), 75(4), 435-441. https://doi.org/10.1016/j.chemosphere.
12.006.
L. Tong, S. Huang, Y. Wang, H. Liu, M. Li. (2014),.Occurrence of antibiotics in the aquatic
environment of Jianghan plain, central China Sci. Total Environ., 497–498 ,
pp. 180-187, 10.1016/j.scitotenv.2014.07.068
Lastre-Acosta, A. M., Teixeria, A. C., Jau, & Jáuregui-Haza, U. J. (2012). ADVANCED
OXIDATION PROCESSES FOR THE TREATMENT OF AQUEOUS SYSTEMS CONTAMINATED WITH ANTIBIOTICS. VII Simposio Universitario Iberoamericano
Sobre Medioambiente-16 Convención Científica De Ingenieria Y Arquitectura,
https://www.researchgate.net/publication/296994679
Li, X., He, J., (2013). Synthesis of raspberry-like SiO2eTiO2 nanoparticles toward antireflective
and self-cleaning coatings. ACS Appl. Mater. Interfaces 11, 5282e5290.
Li, X., Yu, J., & Jiang, C. (2020). Principle and surface science of photocatalysis. Surface
Science of Photocatalysis, 1–38. doi:10.1016/b978-0-08-102890-2.00001-4
Li, Y., Ma, Y., Yang, L., Duan, S., Zhou, F., Chen, J., Liu, Y., & Zhang, B. (2020). Effects of
azithromycin on feeding behavior and nutrition accumulation of Daphnia magna
under the different exposure pathways. Ecotoxicology and Environmental
Safety, 197, 110573. https://doi.org/10.1016/j.ecoenv.2020.110573.
Li, Z., Cong, S., Xu, Yi. (2014). Brookite vs anatase TiO2 in the photocatalytic activity for
organic degradation in water, ACS Catal. 4 3273–3280
Li, Z., Li, M., Zhang, Z., Li, P., Zang, Y., Liu, X., (2020b). Antibiotics in aquatic environments
of China: a review and meta-analysis. Ecotoxicol. Environ. Saf. 199,
Liu, X., Zhang, G., Liu, Y., Lu, S., Qin, P., Guo, X., … Zhang, T. (2019). Occurrence and
fate of antibiotics and antibiotic resistance genes in typical urban water of Beijing,
China. Environmental Pollution. doi:10.1016/j.envpol.2018.12.005
Loos, R., Marinov, D., Sanseverino, I., Napierska, D., & Lettieri, T. (2018). Review of the
st Watch List under the Water Framework Directive and recommendations for
the 2nd Watch List. Publications Office. https://doi.org/10.2760/614367.
Lumaret, J.-P., Errouissi, F., Floate, K., Römbke, J., Wardhaugh, K., (2012). A review
on the toxicity and non-target effects of macrocyclic lactones in terrestrial and
aquatic environments. Curr. Pharm. Biotechnol. 13, 1004–1060. http://dx.doi.
org/10.2174/ 138920112800399257
Lyu, J., Yang, L., Zhang, L., Ye, B., Wang, L., (2020). Antibiotics in soil and water in
China – a systematic review and source analysis. Environ. Pollut. 266, 115147
M. Maletić, M. Vukčević, A. Kalijadis, I. Janković-Častvan, A. Dapčević, Z. Laušević,
M. Laušević. (2016), Hydrothermal synthesis of TiO2/carbon composites and
their application for removal of organic pollutants. Arab. J. Chem. 10.1016/j.
arabjc.2016.06.020
Milaković, M., Vestergaard, G., González-Plaza, J. J., Petrić, I., Šimatović, A., Senta, I.,
… Udiković-Kolić, N. (2019). Pollution from azithromycin-manufacturing promotes
macrolide-resistance gene propagation and induces spatial and seasonal
Esta obra está bajo una licencia internacional Creative Commons Atribución-SinDerivadas 4.0.